Manufacturing engineers develop and create physical artifacts, production processes, and technology. It is a very broad area which includes the design and development of products. The manufacturing engineering discipline has very strong overlaps with mechanical engineering, industrial engineering, electrical engineering, electronic engineering, computer science, materials management, and operations management. Manufacturing engineers' success or failure directly impacts the advancement of technology and the spread of innovation. This field of engineering emerged in the mid to late 20th century, when industrialized countries introduced factories with: 1. Advanced statistical methods of quality control: These factories were pioneered by the American mathematician William Edwards Deming, who was initially ignored by his home country. The same methods of quality control later turned Japanese factories into world leaders in cost-effectiveness and production quality. 2. Industrial robots on the factory floor, introduced in the late 1970s: These computer-controlled welding arms and grippers could perform simple tasks such as attaching a car door quickly and flawlessly 24 hours a day. This cut costs and improved production speed. Modern developments Modern manufacturing engineering studies include all intermediate processes required for the production and integration of a product's components. Main article: Semiconductor manufacturing Some industries, such as semiconductor and steel manufacturers use the term "fabrication" for these processes. KUKA industrial robots being used at a bakery for food production Main article: Automation Automation is used in different processes of manufacturing such as machining and welding. Automated manufacturing refers to the application of automation to produce goods in a factory. The main advantages of automated manufacturing for the manufacturing process are realized with effective implementation of automation and include: higher consistency and quality, reduction of lead times, simplification of production, reduced handling, improved work flow, and improved worker morale. Robotics is the application of mechatronics and automation to create robots, which are often used in manufacturing to perform tasks that are dangerous, unpleasant, or repetitive. These robots may be of any shape and size, but all are preprogrammed and interact physically with the world. To create a robot, an engineer typically employs kinematics (to determine the robot's range of motion) and mechanics (to determine the stresses within the robot). Robots are used extensively in manufacturing engineering. Robots allow businesses to save money on labor, perform tasks that are either too dangerous or too precise for humans to perform economically, and to insure better quality. Many companies employ assembly lines of robots, and some factories are so robotized that they can run by themselves. Outside the factory, robots have been employed in bomb disposal, space exploration, and many other fields. Robots are also sold for various residential applications. Main article: Robotics

No comments:

Post a Comment